Дивні шахи
У даній задачі оптимальним розташування фігур є розміщення «по діагоналі». Тобто рухаючись від клітинки з координатами (1, 1), переміщуючись на одиницю вправо та вгору, поки номер рядку клітинки, в якій ми стоїмо, не перевищує загальної кількості клітинок у цьому стовпці.
Рекомендуємо ознайомитися з прикладом рішення задля кращого розуміння задачі:
 (
var
 i,h,n,x:
longint
;
begin
assign
(
input
,
'chess.in'
)
;
reset
(
input
)
;
assign
(
output
,
'chess.out'
)
;
rewrite
(
output
)
;
read
(
n
)
;

for
 i:=
1

to
 n
do
begin
read
(
x
)
;
if

(
h>=x
)

then

break
;
h:=h+
1
;
end
;

writeln
(
h
)
;
for
 i:=
1

to
 h
do
writeln
(
i,
' '
,i
)
;
end
.
)

Анаграми
За умовою задачі маємо, що два непорожні рядки є анаграмами один одного, якщо один з них є перестановкою символів іншого рядка. Тобто, розглядаючи множину допустимих символів, з яких можуть складатися рядки, кількість кожного з них у першому рядку має в точності відповідати кількості у другому рядку.
Нижче наведений приклад розв’язку задачі:
 (
var

ok
:
boolean
;

i,j,n:
longint
;

s,v:
ansistring
;

a,b:
array
[
0
..
1001
]

of

longint
;

begin

assign
(
input
,
'anagrams.in'
)
;
reset
(
input
)
;

assign
(
output
,
'anagrams.out'
)
;
rewrite
(
output
)
;

readln
(
n
)
;

for
 i:=
1

to
 n
do

begin

for
 j:=
0

to

1000

do

begin

a
[
j
]
:=
0
;

b
[
j
]
:=
0
;

end
;

readln
(
s
)
;

for
 j:=
1

to

length
(
s
)

do

inc
(
a
[
ord
(
s
[
j
])])
;

readln
(
v
)
;

for
 j:=
1

to

length
(
v
)

do

inc
(
b
[
ord
(
v
[
j
])])
;

ok
:
=
true
;

for
 j:=
0

to

1000

do

if

(
a
[
j
]
<>b
[
j
])

then

begin

ok
:
=
false
;

break
;

end
;

if

ok

then

write
(
1
,
' '
)

else

write
(
0
,
' '
)
;
end
;
end
.
)

Гра «70368744177664»
Правила гри дозволяють замінити два однакові числа на їх суму. Оскільки в задачі використовуються лише степені двійки, то доцільно порахувати кількість кожного степеня на початку гри. Якщо в якийсь момент часу, маємо чисел, що рівні , то з них можна отримати чисел, що рівні (групуючи числа виду по парах). Отже, знаючи кількість кожного степеня двійки, можемо знайти найбільшу кількість кожного зі степенів, що можуть вийти впродовж гри, використовуючи наступне співвідношення:
, для .
Нижче наведений приклад розв’язання задачі:
 (
#
include
 <
algorithm
>
#
include
 <
iostream
>
#
include
 <
cstdio
>
#
include
 <
cmath
>
#
include
 <
vector
>

using

namespace

std
;

int
 a
[
50111
]
, b
[
101
]
;

int

main
()
{
freopen
(
"game2048.in"
,
"r"
,
stdin
)
;

freopen
(
"game2048.out"
,
"w"
,
stdout
)
;

int
 n
;

scanf
(
"%d"
,
&
n
)
;
for

(
int
 i
=

0
;
 i
<
 n
;
 i
++
)
scanf
(
"%d"
,
&
a
[
i
])
;
sort
(
a, a
+
 n
)
;

int
 j
=

0
;
for

(
int
 i
=

0
;
 i
<=

30
;
 i
++
)
{
int
 x
=

1

<<
 i
;
while

(
j
<
 n
&&
 a
[
j
]

<=
 x
)
{
if

(
a
[
j
]

==
 x
)
 b
[
i
]
++
;
j
++
;
}
}
int

st

=

0
;
for

(
int
 i
=

1
;
 i
<=

60
;
 i
++
)
{
b
[
i
]

+
=
 b
[
i
-

1
]

/

2
;
if

(
b
[
i
]

>

0
)

st

=
 i
;
}

long

long

ans

=

1
;
for

(
int
 i
=

1
;
 i
<=

st
;
 i
++
)
ans

*
=

2
;
cout

<<

ans

<<

endl
;
}
)

Степан тестувальник
Ідея розв’язання задачі полягає в тому, щоб знаходити відповідь рухаючись з кінця, виконуючи операції, описаного в умові задачі алгоритму, у зворотному порядку. Ключем до цього стане моделювання кожної з двох описаних операцій – U та D. Промоделювавши, можна помітити, що в залежності від виконаної операції та того, в якій з половин стопки, та парності номера картки у стопці після здійснення цієї операції, можна визначити, номер у стопці, що мала картка до виконання операції.
Приклад розв’язання задачі:
 (
#
include
 <
iostream
>
#
include
 <
cstdio
>

using

namespace

std
;

int

main
()
{
freopen
(
"
testing.in
"
,
"r"
,
stdin
)
;
freopen
(
"
testing.out
"
,
"w"
,
stdout
)
;

int
 n, k
;
string
 s
;
cin

>>
 n
>>
 k
>>
 s
;

for

(
int
 i
=

s.
length
()

-

1
;
 i
>=

0
;
 i
--
)
{
if

(
s
[
i
]

==

'U'
)
{
if

(
k
%

2

==

1
)

k
=

(
k
+

1
)

/

2
;
else

k
=
 n
/

2

+
 k
/

2
;
}
else
{
if

(
k
%

2

==

1
)

k
=
 n
/

2

+

(
k
+

1
)

/

2
;
else

k
=
 k
/

2
;
}
}
cout

<<
 k
<<

endl
;
}
)

Цікаве число
Нехай маємо число . Запишемо умову, згідно якої необхідно розв’язати задачу:
.
Розпишемо попередню формулу:
;
.
Тепер можемо розглянути два випадки:
1)
Можемо перебрати всі числа від 1 до , і перевірити чи існує таке , що і .
2)
Відповідно до цієї умови матимемо наступне обмеження:
,
тоді:
.
Отже, можемо перебрати «цифру», з якої складатиметься число у системі числення .
Нижче наведений приклад розв’язку задачі:

 (
#
include
 <
algorithm
>
#
include
 <
iostream
>
#
include
 <
cstdio
>
#
include
 <
vector
>
#
include
 <
cmath
>

using

namespace

std
;

long

long
 x,
ans
;

void

check
(
long

long
 k
)
{
long

long
 s
=

1
;
long

long

st

=

1
;
while

(
s
<=
 x
)
{
if

(
x
%
 s
==

0
)
{
long

long
 g
=
 x
/
 s
;
if

(
g
<
 k
)
{
if

(
k
<

ans
)

ans

=
 k
;
return
;
}
}
st

*
=
 k
;
s
+
=

st
;
}
}

int

main
()
{
freopen
(
"
numbers.in
"
,
"r"
,
stdin
)
;
freopen
(
"
numbers.out
"
,
"w"
,
stdout
)
;

scanf
(
"%
lld
"
,
&
x
)
;
if

(
x
==

1
){
cout

<<

2

<<

endl
;
return

0
;
}
if

(
x
==

2
){
cout

<<

3

<<

endl
;

return

0
;
}

ans

=
 x
-

1
;
for

(
long

long
 i
=

2
;
 i
<=

sqrt
(
x
)
;
 i
++
)
{
check
(
i
)
;
if

(
x
%
 i
==

0

&&
 x
/
 i
-

1

>
 i
)
{
if

(
x
/
 i
-

1

<

ans
)

ans

=
 x
/
 i
-

1
;
}
}
cout

<<

ans

<<

endl
;
}
)

